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Abstract - Correlation of science results from multi-disciplinary communities is a difficult task.
Traditionally, data from science missions is archived in proprietary data systems that are not interoperable.
The Object Oriented Data Technology (OODT) task at the Jet Propulsion Laboratory is working on
building a distributed product server as part of a distributed component framework to allow heterogeneous
data systems to communicate and share scientific results. These components communicate using a standard
metadata interchange language. This provides an excellent vehicle for turning data into information and
allowing for data in unique formats to be correlated and exchanged. Advances in Internet and distributed
object technologies provide an excellent framework for sharing data across multiple data systems. The
product server component of the OODT framework allows for results to be interchanged between native
data system formats and the framework using an XML-based query language. The product server
component wraps data system interfaces, which abstracts away the data system unique interfaces, and
provides a scalable architecture by providing query handlers that facilitate the interchange of queries and
results. This paper, the second in a series on the OODT task [4], focuses on the development of the product
server component using the Planetary Data System (PDS) as an example system. This continues the
discussion of an enterprise framework that allows for data system interoperability across multiple science
disciplines.

I. Introduction

Science data has continued to devolve into a
large set of highly fragmented distributed data
systems.  These systems are heterogeneous and
geographically distributed making
interoperability and integration difficult.
Furthermore, correlating science data across a
multi-disciplinary environment is even more
challenging.  The Object Oriented Data
Technology task at the Jet Propulsion Laboratory
is currently researching a distributed framework
that will allow for data products from distributed
data systems to be located and retrieved.

Data systems across NASA are heterogeneous in
nature. They have traditionally followed
stovepipe implementations, and there has been
very little integration across these systems.  The
implementations are often unique, and there is no
standard mechanism for data interchange
between these systems.  A key to linking these

data systems together, however, is metadata.
The NASA Planetary Data System (PDS) has
developed an archive standards architecture that
provides a good metadata foundation that can be
used to build an interoperable data architecture
for exchanging data products for planetary
missions.

The Planetary Data System (PDS) manages and
archives planetary science data for NASA’s
Office of Space Science. In existence since the
late 1980s, the PDS early on developed a
standards architecture that included a formal
enterprise model, a means for collecting and
associating metadata with science data products,
and a peer review process for ensuring data and
metadata validity. This active science data
archive currently has over five terabytes of data
curated by six geographically distributed science
nodes and stored and distributed on CD and
DVD media. The standards architecture has
proven to be critical to maintaining consistency
across the various science domains represented
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in the planetary science community and for
supporting a level of interoperability across the
nodes. The products are stored in a variety of
data and machine formats and are served from
heterogeneous hardware platforms.   For
example, the archive includes a diversity of data
products from images and time series to
spectrum. However the metadata used for
searching and describing the resulting data
products is consistent due to the standards
architecture.

A key to linking enterprise data systems and
databases is to provide a common metadata
model.   The PDS experience in developing and
enforcing metadata standards has proven to be a
critical element in providing a relationship across
the distributed science nodes.   The advent of the
Internet and web technology now affords an
excellent opportunity to build an interoperable
framework that will allow systems to exchange
data based on metadata.  The OODT task is
currently working with the Planetary Data
System to provide a data architecture that allows
for data products within the PDS to be located
and exchanged across the distributed nodes using
a common user interface. We also feel that the
methodology being developed will directly
address the data system interoperability problems
now being encountered in general.

II. Architecture

The OODT architecture has several key
architectural objectives which include
(1) requiring that individual data systems be
encapsulated to hide uniqueness; (2) requiring
that communication between distributed services
use metadata for data interchange; (3) defining a
standard data dictionary based on metadata for
describing data resources; (4) providing a
solution that is both scalable and extensible; (5)
providing a standard mechanism for exchanging
data system product results across distributed
services; and (6) allowing systems using
different data dictionaries to be integrated.

The data architecture that is being built by the
Object Oriented Data Technology task is
focusing on building a middleware1 component

                                                          
1 In the computer industry, middleware is a
general term for any programming that serves to
“glue together”  or mediate between two separate

framework that provides the infrastructure
necessary to interconnect and encapsulate data
systems.  The product service, the focus on this
paper, is part of a larger component framework
[4], which includes a query, profile and product
server.   Profile and product service instances are
distributed across the enterprise and manage
information and access to a set of data system
resources.  A key benefit of this architecture is
that new service instances (or servers) can be
introduced in order to scale the system. The basic
system architecture is illustrated in Figure 1.

The profile server manages profiles—sets of
resource definitions [11]—about distributed data
systems and their products. A profile is a
metadata description of the resources known by a
node in the distributed framework.  These
resources are interfaces, data products, or
profiles available in the integrated enterprise.
Profiles may be grouped and served by more
than one profile server. The query component
ties this architecture together by providing and
managing the traversal of the integrated digraph
node architecture.  It also interprets profile
definitions that provide mappings between data
system nomenclature. The query component also
provides the facility to manage concurrent
queries across multiple servers in order to
improve performance.

The product server provides the translation
necessary to map a product retrieved from a data-
system–dependent environment into a neutral

                                                                               
and usually already existing programs
[http://www.whatis.com].

Figure 1: Example System Architecture
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format suitable for exchange between systems.
The product server architecture is similar to the
profile architecture by providing a distributed
approach allowing one or more instantiations of
product servers across a distributed enterprise. A
specific goal of this architecture is to allow
heterogeneous data systems to be easily added
without changing the way their data is stored.

The distributed architecture described lends itself
naturally to a distributed object implementation.
We used the Common Object Request Broker
Architecture (CORBA) to provide the distributed
object framework and to communicate and
exchange data in heterogeneous environments
using the Internet Inter-ORB Protocol (IIOP)
[17]. This activity is currently using an
implementation of the CORBA 2.0 standard
from Object Oriented Concepts known as
Orbacus [18]. Each profile and product server
node is defined by a separate object name (or
node name).  The CORBA naming service
allows for nodes to be located using the naming
service that is included in the Orbacus
implementation.  Profile and product server
instantiations are uniquely identified by name.
These names are used as part of the metadata
header encoded to identify enterprise services
that can support queries for distributed products.

Components of the architecture communicate
using an Electronic Data Interchange (EDI)
mechanism implemented using the Extensible
Markup Language (XML) [21].    The use of
XML, as part of the data interchange, isolates the
data content and data transport.  This is
significant since it allows both the interchange
language and the transport mechanism to evolve
independently.   It also continues to allow the
architecture to be focused on metadata
development.

The XML interchange language that is
implemented is referred to as the OODT Query
Definition.  The query definition is implemented
independent of any one database, functional, or
programming language and is intended to
provide an abstract view of both the query
expression and the results.  Using a query
definition as the interface between the services
allows for each component (profile or product
server) to plug into the architecture by either
satisfying queries that it receives, or returning a
null set.  The query definition also allows for
each data system to be encapsulated. This allows
various implementations ranging from the use of

relational and objects database management
systems to implementations that use flat file and
home-grown databases for cataloging and storing
data products to exchange information by
plugging into a generic query definition.

The component framework has been developed
entirely in the Java programming language along
with CORBA and XML [21].  Java allows for
the implementation of the object architecture and
allows the framework to be easily extended to
integrate new data systems.  Java is particularly
useful in the design of the product service
component due to its ability to dynamically bind
objects at run time which allows the system to
easily integrate new data systems.

One of the goals of this architecture is to provide
a standard application program interface (API)
that will allow for generic science analysis tools
to be written that can plug into the architecture to
retrieve and correlate data from multiple data
sources.  This is accomplished through the
component architecture.  Abstracting the
implementation away from the client allows for
the infrastructure to evolve and expand without
breaking the tool interfaces.  It also moves the
domain intelligence to the middleware
components which removes the constraint that
the tools need to have the knowledge of the
protocol and location of data systems in order to
query and retrieve data from them.  The use of a
component framework also allows for new
server-side components to be developed in order
to extend the query capabilities.

In Figure 2 the framework shows a basic
middleware architecture with clients and servers
plugging together.

Middleware

Applications User I/F

Data

Figure 2: Role of Middleware
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The data architecture described focuses on
providing a framework for solving complex
integration problems across heterogeneous data
systems.  It addresses the issues of data location,
data transformation, and data exchange.  The
framework provides a scalable architecture that
centers on the use of metadata.  It also allows for
data systems to continue to retain their unique
attributes, yet plug into an enterprise data
architecture that allows for the successful
exchange of data content through the use of
XML. By using XML this framework is able to
impose an inter-disciplinary communication
mechanism for data to be shared and exchanged.

III. Profile Service

Instruments and experiments generate science
data products that are archived in data systems.
Unfortunately, these data systems are
heterogeneous and there are few common
standards for querying. This makes locating data
across these systems very difficult.  Scientists
and researchers are typically required to visit
each data system independently and use local
tools in order to locate the data. The proposed
distributed component framework can be used to
encapsulate each data system and thereby create
a network of product servers. The profile service
provides a common standard for locating the
server that will resolve an incoming query.

The profile service uses resource profiles or
metadata2 to describe each product server and the
data products it serves. Using these resource
profiles, the profile server uses an incoming
query’s constraints to determine what product
servers in the digraph of distributed product
servers can resolve the query. For example,
within a space sciences implementation of this
framework, a query for selected images of Mars
should be sent to the product server maintaining
the Mars Global Surveyor images.

The Extensible Markup Language (XML) was
chosen as the language for the resource profiles.
The Document Type Definition (DTD)
specification in Figure 3 illustrates the basic
components of the resource profile which has
                                                          
2 Metadata is, literally, data about data, or
information that describes the characteristics of
data.  For example, 37.6 is data.  The fact that
it’s a measurement of a body’s temperature in
Kelvins is metadata. [6]

three parts: the profile attributes, resource
attributes, and the profile elements.

The <profAttributes> section provides attributes
of the profile itself such as a system-wide unique
identifier, title, and description. For a more
complete description of the DTD elements, the
DTD and a data dictionary have been registered
with OASIS[16].

<! ELEMENT pr of i l es ( pr of i l e+) >

<! ELEMENT pr of i l e
( pr of At t r i but es,
 r esAt t r i but es,
 pr of El ement * ) >

  <! ELEMENT pr of At t r i but es
  ( pr of I d,  pr of Ver si on* ,  pr of Ti t l e* ,
    pr of Desc* ,  pr of Type* ,  pr of St at usI d* ,
    pr of Secur i t yType* ,  pr of Par ent I d* ,
    pr of Chi l dI d* ,  pr of RegAut hor i t y* ,
    pr of Revi si onNot e* ,  pr of Dat aDi ct I d* ) >

  <! ELEMENT r esAt t r i but es
  ( I dent i f i er ,  Ti t l e* ,  For mat * ,
   Descr i pt i on* , Cr eat or * ,  Subj ect * ,
   Publ i sher * ,  Cont r i but or * ,  Dat e* ,
   Type* ,  Sour ce* ,  Language* ,
   Rel at i on* ,  Cover age* ,  Ri ght s* ,
   r esCont ext * ,  r esCl ass* ,  r esLocat i on* ) >

  <! ELEMENT pr of El ement
  ( el emI d,  el emName* ,  el emDesc* ,
   el emType* ,  el emUni t * ,
   ( el emVal ue |
    ( el emMi nVal ue,  el emMaxVal ue) ) * ,
   el emSynonym* ,  el emObl i gat i on* ,
   el emMaxOccur r ence* , el emComment * ) >

Figure 3: OODT Profile DTD

The <resAttributes> section provides the actual
resource attributes. The Dublin Core metadata
element set [9] for describing electronic
resources has been adopted. Three additional
resource attributes have been added to identify
the resource’s local discipline, location, and
class.

The <profElement> section, the final part of the
profile, provides a description of the resource’s
data content by providing a list of data product
attributes and their values. For example, the
Planetary Data System (PDS) maintains a DVD
jukebox that provides online access to most of its
archived data products. A resource profile for the
jukebox as a product server would encode
searchable attributes into this section of the
profile. For example instrument types, target
names, mission names and their associated
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values would be included indicating that the
server could handle a query with these attributes
as constraints.

As can be seen from Figures 3 and 4, each data
attribute is defined using meta-attributes such as
<elemId> and <elemValue>. To maintain
compliance with developing international
standards, these meta-attributes are consistent
with those defined in ISO/IEC 11179 –
Specification and Standardization of Data
Elements.  The description of this standard is
available through ISO/IEC.

<pr of i l e>
  <pr of At t r i but es>
    <pr of I d>PROFI LE_nnn</ pr of I d>
    <pr of Ti t l e>Pr of i l e </ pr of Ti t l e>
    <pr of Desc>Thi s pr of i l e … </ pr of Desc>
  </ pr of At t r i but es>
  <r esAt t r i but es>
    <I dent i f i er >PDSPS_nnn</ I dent i f i er >
    <Ti t l e>PDS DVD Jukebox…</ Ti t l e>
    <For mat >i mage/ pds</ For mat >
    <Language>en</ Language>
    <r esCont ext >NASA. PDS</ r esCont ext >
    <r esCl ass>dat a. gr anul e</ r esCl ass>
    <r esLocat i on>ht t p: / / </ r esLocat i on>
  </ r esAt t r i but es>
    <pr of El ement >
      <el emI d>TARGET_NAME</ el emI d>
      <el emType>ENUMERATI ON</ el emType>
      <el emVal ue>DEI MOS</ el emVal ue>
      <el emVal ue>MARS</ el emVal ue>
      <el emVal ue>PHOBOS</ el emVal ue>
      <el emSynonym>ADS. OBJECT_I D
                     </ el emSynonym>
    </ pr of El ement >
</ pr of i l e>

Figure 4: Example Profile - PDS DIS

Under this approach, supporting interoperability
between product servers from different domains
is strongly dependent on metadata compatibility,
or how well the metadata spans the domains. For
example, two related domains such as planetary
science and astrophysics both associate one or
more target bodies with most data products.
However, unless the same identifier is used to
identify the target, even simple location of
products cannot be easily supported. In fact as
more sophisticated interoperability such as data
transformation and correlation are requested,
deeper levels of metadata compatibility will be
required. For example, once a target body is
identified, sufficient metadata must then be
available for reference frame identification and
possible conversion.

The profile service supports the location of
products in two ways. Given a query, the profile
first identifies resources that can resolve the
query. The profiles of these resources can be
returned directly to the application and the
application can use elements of the profile to
provide resource descriptions and links for the
user. Alternatively, the framework can broadcast
the query to the identified resources and return
the results to the users. These two alternatives
provide application developers with the
flexibility to build robust product location
services.

When using metadata to enable interoperability
between domains, the hard problem of finding
metadata commonalities across domains arises.
This typically involves identifying similar
attributes, determining core concepts,
generalizing descriptions, and determining the
primary name and synonyms. The profile service
has started to address this problem through
<elemSynonym>. This profile attribute simply
maps synonyms to primary names.

IV. Query Architecture

The query service of the framework serves as the
starting point for users to retrieve information
stored across distributed data nodes. The query
service’s CORBA interface enables applications
to have a programmatic entry point for entering
queries and retrieving results. To facilitate
application development, we have implemented a
Java API that wraps the CORBA interface (a
C++ API is forthcoming). This enables scientists
and engineers to develop their own data analysis
applications to access disparate data systems
from a single API. In addition, as more data
systems are added to the framework, existing
applications can access the new systems with no
changes. Furthermore, multiple user interfaces
that access the query component are possible.
One such interface that we have developed is a
web interface. The web interface uses the Java
API to give scientists and engineers immediate
access to data systems from any common web
browser without any programming or knowledge
of what data systems to search.

Once a query as been entered, the query service
first determines what resources registered within
the system can resolve the query by searching a
directed graph of resource profile nodes. The
query service uses the CORBA naming service
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to connect to a profile node within the directed
graph.  In general, searches will enter at the root
or parent node; however, the query service can
enter and search starting at any node in the
graph.

The query service "crawls" through multiple
nodes in the directed graph automatically. The
query service uses "spider" objects to execute
queries at a node and are part of the scatter-
gather approach: each object can run in its own
thread of execution, maximizing the concurrency
of multiple node searches in the system.  The
system scatters the spiders across nodes and
gathers their results as they become available.

Figure 6 shows a Unified Modeling Language
An Unified Modeling Language (UML) [2]
sequence diagram of a typical search is
illustrated in Figure 5.  In the diagram, objects
are shown across the top with their lifelines
dropping down as time increases.  Rectangles
over the lifelines depict when an object is active.
Solid arrows show method calls on an object,
while dashed arrows show returns from those
calls.  A user’s query triggers the action at the
Query Server object through its “execute search”
method.  The Query Server asks its root Profile
Server object for any matches to the query.  In
response, the Profile Server returns three
possible other Profile Servers that could contain
matches (in addition to any matched resource
profile it has itself).  Concurrently, the Query
Server executes the same query on the other
Profile Servers.  As each server returns more
information, the Query Server may query yet
more and more servers.

Since the directed graph of resource profiles is
not necessarily acyclic, the query service must
take care not to re-query profile nodes it has
already visited, or else it could get caught in an
infinite loop.  The query component trivially
prevents this by tracking a set of profiles it has
queried so far.

Once the query component's spiders have
completed their tasks and depending on query
attributes the query service either simply returns
the resource profiles or re-broadcasts the query
to the identified resources so that they can in turn
perform the query. In the former case, the query
service collects the resulting resource profiles
and returns them to the calling applications.  This
scenario is illustrated in Figure 1 when
XML_QUERY(4) is returned to the application.
The application can translate the resource
profiles into HTML for presentation within a
web browser. Using resource location
information from the profiles, the application can
create a hyperlink to allow a user to link directly
to the resource.

If the query is re-broadcasted to the identified
resources, each resource performs the query and
returns the results to the query service. The query
service then re-assembles the resulting
collections into a single collection and returns it
to the application. This scenario is illustrated in
Figure 1 where XML_QUERY(4) returns
product server results.

One possible extension that we are considering
for the query service is to make it available via
the HTTP standard. This would allow HTML
pages to send XML queries directly to selected
resources and render results directly into the
HTML document.

Within the query service, a query is represented
as an XML document. The document includes a
header section that provides query attributes such
as unique identifier, title, description, security
level, and a revision note. Following these
attributes are indicators as to how the query
should propagate through the profile digraph, the
maximum number of results allowed, number of
results, and a string representing the original
query. For example, the following XML
document results from the input of the simple
keyword query "TARGET_NAME = MARS".

<query>
 <queryAttributes>

Q uery Server Product Server Data System  1 Data System  2 Data System  3

Figure 5: UML Diagram of Query Sequence
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  <queryId>OODT_Q070321</queryId>
  <queryTitle>PDS DIS Query</queryTitle>
  <queryDesc>PDS DIS Query Example</queryDesc>
  <queryType>QUERY</queryType>
  <queryStatusId>ACTIVE</queryStatusId>
  <querySecurityType>UNKNOWN</querySecurityType>
  <queryRevisionNote>2000-05-12</queryRevisionNote>
  <queryDataDictId>PDS_DS_DD_ V1</queryDataDictId>
 </queryAttributes>
 <queryResultModeId>ATTRIBUTE</queryResultModeId>
<queryPropogationType>BROADCAST
                                                      </queryPropogationType>
 <queryPropogationLevels>N/A</queryPropogationLevels>
 <queryMaxResults>100</queryMaxResults>
 <queryResults>0</queryResults>
<queryKWQString>TARGET_NAME=MARS
                                                      </queryKWQString>
 <querySelectSet></querySelectSet>
 <queryFromSet></queryFromSet>
 <queryWhereSet>
  <queryElement>
   <tokenRole>elemName</tokenRole>
   <tokenValue>TARGET_NAME</tokenValue>
  </queryElement>
  <queryElement>
   <tokenRole>LITERAL</tokenRole>
   <tokenValue>MARS</tokenValue>
  </queryElement>
  <queryElement>
   <tokenRole>RELOP</tokenRole>
   <tokenValue>EQ</tokenValue>
  </queryElement>
 </queryWhereSet>
 <queryResultSet></queryResultSet>
</query>

The actual query is encoded into three separate
sections of the XML document. The
<queryWhereSet> section encodes query
constraint terms using post-fix notation. As can
be seen in the example, the string
“TARGET_NAME = MARS” has been encoded
using the tokens “TARGET_NAME”, “MARS”,
and “EQ” as <queryElements> together with
tokens such as “LITERAL”  to indicate roles.
These tokens are used as constraints against a
resource profile’s profile elements.

The <querySelectSet> includes the names of
elements to be returned from the query. Since no
elements were specified in the example, the
default is to return all elements.

 The <queryFromSet> is encoded similar to the
<queryWhereSet>, except that its elements are
used as constraints against profile or resource
attributes. For example, <resClass> could be
used to return only profiles that describe system
interfaces using the value “application.interface” .

The <queryResultSet> collects the results
produced by the query. As mentioned above,
resource profiles are returned after the digraph
search. After redirection of the query to selected

resources, the results from the system resources
performing the query are returned.

The Java class XMLQuery has been developed
to manage the XML query documents.  Currently
there are two constructors for the class. The first
accepts a simple keyword query such as
“TARGET_NAME = MARS”, parses the string
and encodes the query in the structure. The
second accepts a query in XML document
format. Additional constructors can and will be
implemented for other query formats. A method
exists for returning the query in XML document
format. Methods and iterators are also available
for accessing any of the query elements and for
putting and getting results.

The XMLQuery object is a key element of the
distributed component framework. As a user
query enters the system, it is encoded into an
XMLQuery object by the query server and then
sent to and used by the profile server component
to search the digraph. All resulting profiles are
collected in the object and returned to the query
server. Depending on a query attribute, the
collected profiles are either returned to the
calling application or the original XMLQuery
object is redirected to each identified resource. In
the second case, the query results from each
resource are collected in the object. The
XMLQuery object is passed as a message within
the system, however, the XML query document
can be created for communicating with
applications outside the system.

A key goal of the distributed component
framework is enabling interoperability between
heterogeneous data systems. As mentioned
above, this framework uses system
encapsulation, resource profiles, and message
passing to hide system heterogeneity. This leaves
the role of enabling interoperability to metadata.

In this context, metadata can enable
interoperability in two ways. The first is to find
and use metadata that is common to the separate
data systems. For example, within the planetary
data systems the data element TARGET_NAME
is used to identify the object from which data is
being collected. In astrophysics systems
OBJECT_ID is used. If one of the terms were
chosen and adopted throughout a system that
encompassed both domains, a simple level of
interoperability is trivially enabled. The second
and more likely scenario is that both terms will
be used interchangeably within the framework.
The framework addresses this situation by
allowing synonyms to be included in a resource’s
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profile as illustrated in Figure 4. As can be seen,
TARGET_NAME is included as an
<elemName> and OBJECT_ID is included as its
elemSynonym. This provides a mapping between
the two terms that can be used by any service
within the framework. For example, a planetary
scientist could submit the
“TARGET_NAME=MARS” query and the
system would be able to locate and create a
query for an astrophysics resource using
OBJECT_ID=MARS.

The query architecture uses resource profiles to
identify resources that can resolve a query. As
described earlier, the resource described can be a
product server that uses the query to retrieve and
return data products. This implements a one-to-
many mapping between resource profiles and
data products. Alternatively, a profile can
describe a single data product. This implements a
one-to-one mapping between profiles and data
products. Even though not efficient for large
collections of data products, this latter approach
provides a simple mechanism for implementing a
data product inventory.

V. Product Server Architecture

The product service component, like the profile
component, is instantiated as a node in the
distributed architecture and provides the
capability to return data system products based
on a query.  This allows each data system to
maintain heterogeneous implementations, but
still integrate into the enterprise architecture.
Generally, administrators will start one product
server for each data system, but such a server
does not have to be collocated with its data
system.

Product servers accept the same XML query
structure as profile servers.  Their response,
however, is different.  Instead of retrieving a
profile or a portion of a profile that describes
data system resources, it delivers actual products
from a data system.  Moreover, it converts the
products from their underlying storage medium
into a uniform transport format.  These
differences do not affect the structure of the
XML document representing the query, which
encapsulates the query, profile results, and
product results.  Product results appear under the
queryResultSet tag.

Each product server consists of two parts: the
enterprise interface and the data-system–specific
interface, known as the query handler.  The
query mechanism uses the enterprise interface to
make queries for products.  Because this is a
CORBA interface, like that of the profile servers,
API developers can query a product server
directly, although calling upon the query service
is more common.  The product server's enterprise
interface then calls upon the data-system–
specific query handlers to retrieve products from
specific data systems.  Developers integrating the
OODT software into a new data system
environment provide implementations of query
handlers to communicate with specific,
implementation-dependent data systems.

As mentioned, each product server node provides
data access to one or more data systems.  A
product server node instantiates a Java-based
server that integrates with the query service and
receives XML-based queries using the XML
query structure explained in Section IV. This
profile attribute simply maps synonyms to
primary names.

The product server framework that is provided is
a generic Java-based server that dynamically
loads query handlers defined and registered with
the service.  Once the server receives a query it
then notifies each registered query handler as a
separate thread managed by the product server.
This allows the product server to time out queries
to resources which may not be available as well
as maximize concurrency to multiple data
systems.  The product server then packages the
results from each query handler and returns the
results using the XML-defined query definition.
These results are then passed back to the Query
Service which integrates all the results from the
distributed product servers.

Query handlers provide a wrapper around each
data system interface.  This abstracts the data
system away from the enterprise and allows the
query handlers to function as a translation
service.  Developers implement query handlers
using Java's type model, which separates types
from classes using interfaces3.  The query
component specifies a standard Java interface to

                                                          
3 An interface in Java is a specification for the
methods of a class.  A class that implements a
named interface must provide a definition for
each method specified by interface or else be
marked as an abstract class.
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which query handlers must conform.  As
mentioned, developers creating query handlers
define classes that implement the query handler
interface allowing the product framework to
communicate with the query handlers.  Thanks to
Java’s strong typing and dynamic binding,
integrating query handlers is a trivial matter that
requires none of the problems typically inherent
in the corresponding C/C++ solution of
dynamically-loaded libraries.  Although not
implemented, it is also possible for the product
server to alter its set of query handlers during its
lifetime without shutting down and restarting the
system.

The query handlers are loaded by the product
server and passed the XML query.  The query
handlers transform the queries into the system-
dependent query language in order to access the
proprietary interface.  This moves the
responsibility for integrating the data-system–
dependent data model onto the data system and
away from the OODT data infrastructure.  This is
an important design consideration for
accommodating scalability in a larger enterprise.
An example would be the JPL central PDS node.
Implementation of a query handler for this node
requires that a mapping between the resource
location service XML-based query and the
central node's Sybase RDBMS be implemented.
The query handler would then translate XML-
based queries into a SQL-based query
referencing the schema that was implemented by
the PDS central node.  This then provides the
core mapping necessary to allow unique data
system products to be retrieved from their native
environments.

Java's rich standard API, as well as the freely and
commercially-available libraries for Java, make
developing query handlers a simple matter.  For
example, accessing data in an SQL database is
possible with the JDBC API, part of the standard
Java Development Kit.  Network resources are
available with the networking API.  Furthermore,
translating the query from XML and product
results to XML does not require knowledge of
XML since the OODT framework includes the
previously mentioned class  that encapsulates
and manages the XML query document.

The product server framework that is provided is
a generic Java-based server that dynamically
loads query handlers defined and registered with
the service.  Once the query handler receives
products they must be transformed into a

standard format that can be exchanged.  The
XML query structure defines the result format
that allows for data to be returned in various
formats.  One of the requirements of this
architecture is to provide a list of common
interchange formats that imposes a set of
standards for interoperability.  The challenge is
to provide a simple set of common formats for
images and text, and require that results that fit
into these categories use these formats for
interchange.  This would mean that all images
that are in GIF may need to be converted into
JPEG if that was the chosen format for images.
It is important to point out that results which do
not fit into a these standards can be returned in
their native format.  The goal is to provide
flexibility in the architecture, but where possible
promote standards for interoperability.

Figure 6 demonstrates an image of Mars returned
as a result of a query to a product server using a
simple web tool that plugs into the OODT
framework.

Products returned in the XML query document
take the form of either UTF-8 text (or ASCII text
as a proper subset of UTF-8) or as base-64
encoded text, depending on the data type of the
product.  Although we can return arbitrarily large
binary objects with this interface, practical
limitations and poorer performance of large

Figure 6: Image Product Query
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XML document handling suggests another
supported alternative: returning a reference to the
object.  For example, a small JPEG JFIF image
could be base-64 encoded in the XML query
document, whereas a large image could return a
URL to access it instead of the image itself in the
XML query document.  Moreover, the small
image could be a thumbnail of the large image,
leaving the choice of transferring a large binary
object up to the user.

The product server design promotes
interoperability by providing an interchange
capability to allow a common query mechanism
to retrieve products from unique data system
implementations.  The design presented allows
distributed data system nodes to maintain their
independence by providing a standard product
server that can be extended to access the
distributed data systems.  This design provides a
scalable solution by identifying a standard
language for interoperability, and a framework
for extending that interoperability to each data
system.  It also scales by pushing the
implementation requirements onto each
individual data system.

VI. Conclusion and Future Work

Product servers are presented as components of a
distributed framework that allows heterogeneous
data systems to communicate and share data. The
components of this framework use XML, a
standard metadata interchange language that has
gained in popularity for improving the ability for
applications to be integrated through electronic
data interchange.  This solution allows for
loosely related data systems to remain
distributed, while providing a content
management and interchange capability for
locating specific data products and resources
archived at remote locations.

This component framework promotes the use of
open standards.  This architecture will
accommodate changes as XML and standards for
interoperability evolve.  Currently, many
organizations are looking at standards for
electronic data interchange and queries using
XML.  At the time of writing this paper W3C has
just published a draft set of requirements for an
XML query language [22].

A key to the solution presented is providing data
abstraction through the introduction of a

distributed framework.  Clients are abstracted
away from having knowledge of the location and
format of individual data products.  This is
significant since it allows for interoperability
across distributed data management systems.  In
February 1990 the National Science Foundation
held a workshop of experts in database
management technologies that identified visions
for the industry.  One vision presented is
identified in a report from that workshop that
stated  “ in a multidatabase environment we strive
to provide location transparency.   That is, all
data should appear to the user as if they are
located at his or her particular site”  [19].
Significant advances in distributed database
technology have been accomplished, however,
they have focused on distributing components of
an integrated homogenous data model in a
decentralized architecture.  The challenge that
the Object Oriented Data Technology task has
been investigating is how to introduce an
analytical architecture that provides integration
of heterogeneous data models and data systems
while maintaining location transparency so that
the users are unaware that the data is not local.

Metadata provides a foundation to our solution.
The ability to map heterogeneous data system
implementations is dependent on the ability to
understand how to classify and relate the
inherent data models behind these systems.
Accomplishing these mappings provides the
necessary interoperability key needed to relate
data products.  Advances in Internet and
distributed technologies allow these systems to
appear as if the data products are local as long as
they are network accessible. The solution
presented, although applied to planetary,
astrophysics, and space science data problems, is
not limited to those disciplines.  Providing a
common metadata model to tie systems together
allows for disciplines to begin to build enterprise
architectures where data can be shared.
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